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History of Adinkras

Symbols of power -

Adinkras and the nature of reality

Figure: Michael Faux and Sylvester “Jim" Gates Figure: June 2010 Cover of Physics World
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Bosons

Figure: The PPG Diagram and "Bubbles” from the Power Puff Girls
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Codes and heights

¢ m-

_ v v=(1,1) € F3
® Vectors v = (v1,v2,...,0y,) in F} are called ht(v) = 2
codes.
v v=(1,0,1) €F3
® Height of the codes ht : F§ — Z as the ht(v) = 2
number of components of v with v; = 1. v v—(0,0,0,1) € F4
ht(v) =1
® A code is even if ht(v) € 2Z.
v v=(1,1,1,1) € F}
¥ A code is doubly even if ht(v) € 4Z. ht(v) =4
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Constructing Adinkras Do

¥ Choose a subspace C' C ht™1(4Z) consisting of

doubly even codes.
11 ht=2

® Draw a bipartite graph with:

¥ “Black” vertices:
B=ht"'(22)/C; 01 10 ht=1

¥ “White" vertices:

_ L .
W =ht"1(2Z +1)/C; o0 -

¥ Edges:
E ={(v,w) € F§ x F3: ht(v —w) = 1}/C. Figure: n = 2 Adinkra
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0011 @

n =4,C = {0000} Adinkra
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ht=2

0001 1000 ht=1

. ht=0
0000

n=4,C ={0000,1111}
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Motivating Question

Can we find different ways

to generate Adinkras?
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Belyl Maps

® Every compact, connected Riemann surface S can be defined by a single polynomial

y) = Z aij:liiyj.
2

¥ Let 8:5 — P(C) be a rational function. A critical value for 3 is a complex number
q = B(P) for some point P = (xq,yo) which satisfies

%P 8513

F(PY=0  and  GHP)GL(P) ~ G(P) (P

¥ A Belyi pair (S, ) is the surface S together with a rational function 3 : S — P!(C)
which has critical values ¢ € {0, 1, co}.
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Example: Riemann Sphere @ ol

Let P1(C) = {(:L’,y) €C2iy— o} U {oo).

We define stereographic projection by the
map

PY(C) = S?*(R),

2Re(z) 2Im(x) |z2-1
(m,y)f—> 2()7 2()7 2 N
|2+ 1" |2+ 1" |z|?+1
As such, we call P}(C) ~ S%(R) the Riemann Figure: Unit Sphere S2(R)
Sphere.
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Example: Torus i
An elliptic curve E is an equation of the form

y?> = x> + Ax + B with A and B complex numbers
such that 4 A3 4+ 27 B2 #£ 0.

There is an elliptic logarithm which induces a map

E(C) = {(z,y) € C%: y?> = 2 + Az + B} U {Og};

!

T2(R) ~ (R/Z) x (R/Z)

Figure: Torus T2(R) Hence, the set of complex points on an elliptic curve is a
Riemann surface of genus 1.
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Example: Riemann sphere

Recall S = P!(C) ~ S?(R). For any natural number n, define the rational map 5: S — P'(C)
via

zn

Z2h 41

B(z) =

This is a Belyl map on the Riemann Sphere.

Example: Torus

Consider the elliptic curve E: y?> = 23 — 2. Recall S = E(C) ~ T?(R) is the torus. Define the
rational map 3: S — P(C) via:

(zt — 622 +1)*
(@® + 2025 — 2621 + 2022 + 1)’

ﬂ(xay) =

This is a Belyi map on the torus.
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Dessins d'Enfant ® Comona

Fix a Belyi pair (S, 3). We construct a
bipartite graph on S as follows:

= ™

¥ B = 371(0) corresponds to “black”

vertices.
® W = 371(1) corresponds to “white”

vertices.
¥ F = 37!(c0) corresponds to centers

of faces.
® E = 371([0,1]) corresponds to edges. 5

Figure: The Dessin d'Enfant for 3(z) = — 1
z

We call this graph a Dessin d’Enfant.
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Pomona

Example: Dessin d'Enfant on the Torus RS

Let S = E(C) be the set of complex points
on the elliptic curve E: y? = 2® — z. Let
B: S — PY(C) be the Toroidal Belyf map

given by:

(x* — 622+ 1)
(28 +2020 — 26 2% + 2022 4+ 1)2°

) B(x,y) =

The corresponding Dessin d'Enfant has

¥ |B| =8 "black” vertices,

9 |W| =28 “white" vertices,
Figure: The Dessin d'Enfant corresponding to 3. ® |F| =16 faces, and
9 |E| =32 edges.
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Proposition (Doran, Iga, Kostiuk, Landweber, Méndez-Diez; 2015)

Fix an integer n > 2. Let ¢ be a primitive 2nth root of unity, and denote o : P!(C) — P*(C)
as that Mébius transformation satisfying o(¢) =0, o(¢3) =1, and o(¢** 1) = <.

(a) Define the set

S = {(:cl @yt y) € PVTYC)

o((* Nxt+zi+2l,,=0
fork=2,3...,n—1 '
Then S is a compact, connected Riemann surface with genus g(S) =1+ 2"73 . (n —4).

(b) There exists a Belyi map 3 : S — P!(C) which sends

2 n
. . | ZL'2 Z
P=(@: - :2y) = z=0 (——2> — ——

Its Dessin d’Enfant has |B| = 2"~! “black” vertices, |[IW| = 2"~! “white” vertices,
|E| = 2" . n edges, and |F| = 2"~2 . n rectangular faces.

(c) Every Adinkra can be constructed using the Belyi pair (S, ).
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Example: Adinkra for n =2 and C' = {00} Do

S =PL(C) ~ S%(R) P =(z,y)

©
2
e =1
B, =P(C z=1
2 (© z2+1
8
Figure: Adinkra as a Dessin d’Enfant 2 (22 — 1)2
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Example: Adinkra for n = 3 and C' = {000}

S =P(C) ~ S?(R) P = (z,y)
%)
=202z
Bz =P!{(C = ——
3= F(C) C TV 1
B
Figure: Adinkra as a Dessin d’Enfant 3 3 (a:3 _ 2\/5)3
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Example: Adinkra for n = 4 and C' = {0000, 1111}

Figure: Adinkra as a Dessin d’Enfant on IP’I((C)
E:y?=2%—x
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Example: Adinkra for n =4 and C' = {0000} Do

4 2 4
Figure: Adinkra as a Dessin d’'Enfant on PL(C) q= (" 62" +1)
E:y2:1‘3—gj ($8+20x6—26334+20x2+1)2
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Motivating Questions @ Comona

What else do we know
about the Belyi pair (S, 3)?

® Doran et al. factor the Belyi map g = Bo @ through a map
3: PY(C) — P'(C) on the sphere to focus on the coloring of the edges.
® Can we factor 3 = o ¢ through a map n : E(C) — P!(C)

on the torus to focus on the rectangular faces?
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Quadric Intersections @ Comona

Let S be a compact, connected Riemann Surface defined as
x% + x% + SU% =0

a(§5)x% + 3:% + :L‘i =0

S:{(xy:a9:---:xy) € PPLHO) .
' (Dl + 2f + i =0

(C2n 3)$1 +172+:L' =0

Fix two integers r and s satisfying 1 < r < s < n. We define the quadric intersection

o( N at +ad +at = 0}

E(C)=<(z1:22: Tysq1: X € P3(C
( ) {( 1 2 +1 +1) ( ) J(CQS_I):E%—F:L%%—:B?H:O
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PRIME 2023 Theorem 1.1

For integers r and s satisfying 1 < r < s < m, the quadric intersection

2r—1y 2, 2 2
+ad+al, =0
E(C) = {(acl L %o Tryy : Tser1) € P3(C) o )@+ oy oy }

o(¢* ol + a5 +a3,, =0
is an elliptic curve which has j-invariant

)\2 —A 1 3 2r—1
( +1) in terms of A\ = o (¢ )

S =20 e T@1) —o(= )
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PRIiME 2023 Theorem 1.2

Consider the Bely pair (S, 3) as in Doran et al.
We factor the Belyi map 8 = 1o ¢ in terms of that Toroidal Belyi map 1 which sends

Q = (z,y) in B(C) to ¢ = 2"/(2" 4+ 1) in P1(C) in terms of

(22 — 2z + A)? — (7 (z? — N)? . q7T/. (¢g—1)m
(=22 Ve 7@ = A2 where T—smn sin - .

zZ =
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g 0 &\ Pomona
Origami College

Given a map ¢: S — T between compact, connected Riemann surfaces, denote e¢(P) to be
the ramification index of ¢ at P, which is an integer that effectively measures how much ¢
fails to be a covering map at P.

® A critical point is a point P € S with e4(P) > 1.
® The correpsonding Q = ¢(P) is called a critical value.
Definition
Let E : y?> = 23 + Ax + B be an elliptic curve; recall that E(C) ~ T?(R) which can be

represented by a rectangle. A nonconstant morphism ¢ : S — E(C) whose critical values
Q € {Og} is said to be an origami. Its degree is the integer

N=> eyP)=|V|+(29(S)—2) where V=¢"(Op).
PeV
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Pomona
=) D

College

Origami

Example

Let E, E’ be elliptic curves and ¢: S = E(C) — E’(C) be an origami with deg ¢ = 3. Recall
that E(C) is a Riemann surface of genus 1, and E’(C) can be represented by a rectangle, so
we can then tile the torus with three squares as follows:

o | e H e [/l e

Each colored vertex then corresponds to a unique point in V = ¢~ 1(Op).
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Origami and Toroidal Belyi maps @ Lo

PRIME 2023 Theorem 2

Consider the Belyi pair (S, 3) as in Doran et al. Assume that 8 = 7 o ¢ for some nonconstant
maps 17 : E(C) — PY(C) and ¢ : S — E(C).
1. n must be a Toroidal Belyi map.

2. ¢ cannot be an origami whenever n > 6.
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1 is a Toroidal Belyi Map D

PRIME 2023 Theorem 2.1

Consider the Belyi pair (S, 3) as in Doran et al. Assume that 8 =7 o ¢ for some nonconstant
maps 7 : E(C) — PY(C) and ¢ : S — E(C). Then 1 must be a Toroidal Belyi map.

Sketch of Proof:
¥ We know that 5 =no¢

eg(P) = ey(P) ey(¢(P)) for all points P € S

If e,(¢(P)) # 1 for some ¢(P) € E(C), then eg(P) # 1

eg(P) # 1 only when 3(P) € {0,1,00}

So n(¢(P)) = B(P) € {0,1, 00}, making n a Belyi map O
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¢ is NOT an Origami!

PRIiME 2023 Theorem 2.2
Consider the BelyT pair (S, 3) as in Doran et al. Assume that 8 = 7 o ¢ for some nonconstant
maps 7 : E(C) — PY(C) and ¢ : S — E(C). Then ¢ cannot be an origami whenever n > 6.

Sketch of Proof.
¥ Partition the set ¢~1(Og) by es(P) and B(P); deduce that exactly one subset is
nonempty.

® Assume n(Og) =0 or 1.

® Use the Hurwitz genus formula to come up with a lower bound on j = e4(P) for
P € ¢71(Op), and use the multiplicativity of ramification indices to come up with an
upper bound.

® Consider the possible cases for j, based on the bounds, finding contradictions using the
fact that deg ¢ = 3 pcy-1(0p) €s(P)-

® Find similar contradictions in the case where n(Og) = .
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Future Work ol

® Adinkras are constructed from subspaces C' C FZ; they are quotients of the hypercube.
We know that they can be embedded on a compact, connected Riemann surface of genus
g(S) =1+2""™73. (n —4). Find explicit embeddings when n > 5.

® The Belyi map 7 : E(C) — P!(C) in Theorem 1 has degree degn = 8n. Factor n = X o~y
for (a) some v : E(C) — E’(C) with deg~y = 8 and (b) some Toroidal Belyi map
A: E'(C) — PY(C) of deg A\ = n whose Dessin d’Enfant has exactly one “black” vertex
and one “white” vertex.
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